Jump to content

Algebra: Difference between revisions

m
Line 192: Line 192:
|}
|}


=== Cross-multiplying to solve for <math>x  </math> when <math>x  </math> is a denominator (bottom of a fraction) ===
=== Cross-multiplying ===


==== numerator ====
* use cross-multiplication to solve for <math>x  </math> when <math>x  </math> is a denominator (bottom of a fraction)


* numerator is at the top of the fraction
* see for numerators and denominators
 
<math>\frac {numerator} 2  </math>
 
* the numerator represents the number being divided by another number
 
* i.e., <math>\frac {numerator} 2  </math> = the same as saying,  '''<math>{numerator} \div 2  </math>'''
 
==== denominator ====
 
* the denominator is at the bottom of the fraction
 
<math>\frac 2 {denominator}  </math>
 
* the denominator represents the number dividing into the other number
 
* .e., <math>\frac 2 {denominator} </math> = the same as saying,  '''<math>2 \div {numerator}  </math>'''


==== How to solve for <math>x  </math> when <math>x  </math> is a denominator: "Cross-multiplication" ====
==== How to solve for <math>x  </math> when <math>x  </math> is a denominator: "Cross-multiplication" ====
{| style="text-align: center;"  
{| style="text-align: center;"  
|+Using Cross-Multipliclation
|+Using Cross-Multiplication
!<math>\frac 6 x = 8  </math>
!<math>\frac 6 x = 8  </math>
!is the same as  
!is the same as  
Line 229: Line 213:
|-
|-
|
|
|now we can solve for <math>x</math>
|
|
|
|-
|<math>8x= 6 \times 1  </math>
|<math>8x= 16  </math><math>\frac {8\times x} 8 = \frac {16} 8  </math><math>x = \frac {16} 8
  </math>
|<math>x=2
 
  </math>
|}
|}




[[Category:Math]]
[[Category:Math]]