Algebra
Solving equations[edit | edit source]
Definitions[edit | edit source]
Expression[edit | edit source]
= any form of showing a mathematical value
- ex. the number 2 may be "expressed" as either "2" or "1+1"
- more complex "expressions" involve variables, such as "2y -5 = 10"
- here, the value (expression) "10" can also be "expressed" as "2y - 5"
Equation[edit | edit source]
= a statement that uses an equal sign (=)
- which means that the expressions on both side of the equal sign have the same value
Inverse Operation[edit | edit source]
= a method for isolating variables by adding or multiplying a value to both sides of an equation
- the "inverse operation" reduces the value of the property on the side of the variable to 1 or 0
- that way the variable becomes "isolated" on one side of the equation
- ex.:
- the "inverse operation" adds -3 to both sides of the equation:
- which leaves us with
Property[edit | edit source]
- = the rule that is applied to numbers in an equation
- the property applied must be the same for both sides of the equation!
- properties include
- Addition property (or subtraction)
- Multiplication property (or division)
Isolating the variable[edit | edit source]
- Equations are solved by "isolating the variable"
- which means "expressing" the unknown value by itself on one side of an equation
- ex. to solve, "4 + x = 6" , we want to "isolate" x, so that we have "x = ___"
- which means "expressing" the unknown value by itself on one side of an equation
Properties of Equality[edit | edit source]
- property = a rule
- equality = that both sides of the equation (equal sign) have the same value
Variable[edit | edit source]
- an unknown value represented, usually represented by the letter
How to solve an equation[edit | edit source]
Using Addition Property[edit | edit source]
- when solving for when is added or subtracted to/from another number
- we "isolate " by using the "Inverse Operation" to remove the number from the side with the variable,
- note that
- addition is adding a positive number:
- where means "positive 3"
- subtraction is adding a negative number:
- where means "negative 3"
- addition is adding a positive number:
- examples:
Addition Property | ||||
---|---|---|---|---|
Equation | ||||
Inverse Operation | add to both sides
(i.e. subtract 4) |
add to both sides
(i.e. add 3) |
||
Solution | ||||
- another way to look at the Inverse Operation, using the same equations is:
Addition Property | ||||
---|---|---|---|---|
Equation | ||||
Inverse Operation | add to both sides
(i.e. subtract 4) |
add to both sides
(i.e. add 3) |
||
simplify | simplify | |||
Solution |
Using Multiplication Property[edit | edit source]
Multiplication Property | ||||
---|---|---|---|---|
Equation | ||||
Inverse Operation | multiply both sides by 6
(isolates x by making the expression which is equal to ) |
divide both sides by 6
(isolate by making the expression which is equal to ) |
||
cancel
(because ) |
cancel
(because ) (note: is the same as ) |
|||
Solution |
Cross-multiplying to solve for when is a denominator (bottom of a fraction)[edit | edit source]
numerator[edit | edit source]
- numerator is at the top of the fraction
- the numerator represents the number being divided by another number
- i.e., = the same as saying,
denominator[edit | edit source]
- the denominator is at the bottom of the fraction
- the denominator represents the number dividing into the other number
- .e., = the same as saying,
How to solve for when is a denominator: "Cross-multiplication"[edit | edit source]
is the same as | ||
---|---|---|
using cross-multiplication, we can move the variable to the top of the fraction (numerator) | ||
is the same as
(using cross-multiplication) |
||