Algebra

From A+ Club Lesson Planner & Study Guide
Revision as of 23:24, 29 February 2024 by Bromley (talk | contribs) (→‎How to solve an equation)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Solving equations[edit | edit source]

Definitions[edit | edit source]

Expression[edit | edit source]

= any form of showing a mathematical value

  • ex. the number 2 may be "expressed" as either "2" or "1+1"
  • more complex "expressions" involve variables, such as "2y -5 = 10"
    • here, the value (expression) "10" can also be "expressed" as "2y - 5"

Equation[edit | edit source]

= a statement that uses an equal sign (=)

  • which means that the expressions on both side of the equal sign have the same value

Inverse Operation[edit | edit source]

= a method for isolating variables by adding or multiplying a value to both sides of an equation

  • the "inverse operation" reduces the value of the property on the side of the variable to 1 or 0
  • that way the variable becomes "isolated" on one side of the equation
  • ex.:
  • the "inverse operation" adds -3 to both sides of the equation:
  • which leaves us with

Operation[edit | edit source]

= a process to change a value

  • addition, subtraction, multiplication and division are the fundamental "operations" of math

Property[edit | edit source]

  • = the rule that is applied to numbers in an equation
  • the property applied must be the same for both sides of the equation!
  • properties include
    • Addition property (or subtraction)
    • Multiplication property (or division)

Isolating the variable[edit | edit source]

  • Equations are solved by "isolating the variable"
    • which means "expressing" the unknown value by itself on one side of an equation
      • ex. to solve, "4 + x = 6" , we want to "isolate" x, so that we have "x = ___"

Properties of Equality[edit | edit source]

  • property = a rule
  • equality = that both sides of the equation (equal sign) have the same value

Variable[edit | edit source]

  • an unknown value represented, usually represented by the letter

How to solve an equation with a single variable[edit | edit source]

Using Addition Property[edit | edit source]

  • when solving for when is added or subtracted to/from another number
    • we "isolate " by using the "Inverse Operation" to remove the number from the side with the variable,
    • note that
      • addition is adding a positive number:
        • where means "positive 3"
      • subtraction is adding a negative number:
        • where means "negative 3"
  • examples:
Properties of Equality
Addition Property
Equation
Inverse Operation add to both sides

(i.e. subtract 4)

add to both sides

(i.e. add 3)

Solution
  • another way to look at the Inverse Operation, using the same equations is:
Properties of Equality
Addition Property
Equation
Inverse Operation add to both sides

(i.e. subtract 4)

add to both sides

(i.e. add 3)

simplify simplify
Solution

Using Multiplication Property[edit | edit source]

Properties of Equality
Multiplication Property
Equation
Inverse Operation multiply both sides by 6

(isolates x by making the expression which is equal to )

divide both sides by 6

(isolate by making the expression which is equal to )

cancel

(because )

cancel

(because )

(note: is the same as )

Solution

Cross-multiplying[edit | edit source]

  • use cross-multiplication to solve for when is a denominator (bottom of a fraction)
  • see for numerators and denominators

How to solve for when is a denominator: "Cross-multiplication"[edit | edit source]

Using Cross-Multiplication
is the same as
using cross-multiplication, we can move the variable to the top of the fraction (numerator)
is the same as

(using cross-multiplication)

now we can solve for

How to solve an equation with two of the same variables[edit | edit source]

  • when an equation has two of the same variables, we isolate the variable by combining its instances
  • ex.
    • the values and may be "distributed" in order to make a single instance of and thereby allowing for it to be isolated

Distributive property[edit | edit source]

= the idea that multiplication can be "distributed" through addition

  • multiplication is addition by a certain factor (number of times)
  • ex. when we multiply , we are adding 5 five times:
    • that is the same as adding five times
    • so we can express times 5 as either
      • or
      • or
        • they all equal 25
  • with variables, we use the process:
    • =
    • =
    • = 7